第二十四章 令人惊叹的细胞

万物简史  作者:比尔·布莱森

生命开始于一个细胞。第一个细胞一分为二,二又分为四,以此类推,仅仅到第47次加倍以后,你就有了1亿亿,10 000 000 000 000 000个细胞,并做好了最终形成一个人的准备。从卵子受精的那一刻起,一直到你离开人世,为了维持和保护你,这些细胞中的每一个都完全知道自己的职责。

对于你的细胞来说,你无任何秘密可言,它们对于你的了解,远远超过你对自己的了解。每一个细胞都带有一整套基因密码——你身体的指令手册,因此它不仅知道怎样做自己的工作,而且对于你体内的其他任何一项工作,它都了如指掌。在你的一生中,你永远没有必要提醒任何一个细胞,要它随时注意其腺嘌呤核苷三磷酸盐的情况,或是找到存放不期然出现的多余叶酸的地方。它将会为你做这样的一些事,以及几百万件别的事。

每个细胞都是自然界的一个奇迹。即便是最简单的细胞,其构造的精巧程度也是人类的智慧永远无法企及的。举个例子,即便是制造一个基本的酵母细胞,你所需要的零部件就和一架波音777喷气式飞机的一样多,而且还必须在直径仅有5微米的球体内将它们组装起来,然后还得以某种方式驱使那个球体进行繁殖。

但是,与人体细胞比起来,无论其多样性还是复杂性,酵母细胞简直不值一提。然而,酵母细胞有着复杂的互动性,因此更有意思。

你的细胞是一个有着1亿亿个公民的国度,每一个公民都以某种特有的方式全心全意地为你的整体利益服务。它们为了你什么都干,它们让你感觉快乐,产生思想。它们使得你能够站立、伸懒腰和蹦蹦跳跳。当你吃东西的时候,它们摄取养分,供给能量,排除废物——干所有你在高中生物学中所了解到的事情,而且它们还不忘记先使你有一种饥饿感,并使你在就餐后产生舒适的感觉,以后就不会再忘记吃东西。它们使你的头发生长,耳朵产生耳垢,大脑悄无声息地运转。它们管理你身上的每一个角落:当你受到威胁时,它们会挺身而出保护你。它们会毫不犹豫地为你而献身——每天有多达数十亿个细胞在这么做,可是终其一生你从未向它们中的任何一个表达过谢意。因此,现在就让我们肃立片刻,向它们表示我们的敬佩与赞赏之意。

细胞怎样完成它们所做的一切——它们怎样储存脂肪,怎样制造胰岛素,怎样参与维持你这样复杂的实体所必需的其他活动,我们也许了解一点点——但仅仅是一点点。你的身体内活跃着至少20万种不同类型的蛋白质。可是到目前为止,我们对它们的了解不超过2%。有人将这一数字调高到50%左右。显然,这取决于你如何界定“了解”这个词的含义。

细胞世界所发生的令人惊讶的事总是层出不穷。在大自然中,一氧化二氮是一种极为可怕的有毒气体,它是造成空气污染的罪魁之一。20世纪80年代科学家们发现人类细胞中不断产生这种气体的时候,自然感到有点儿吃惊。一开始,科学家对它的作用感到很困惑,但接着就发现它无处不在——控制血液的流量和细胞的能量水平呀,对抗癌症及其他病原体呀,调节嗅觉呀,甚至帮助阴茎勃起。这也解释了为什么硝酸甘油,即人们所熟知的炸药,能够缓解心绞痛(它在血液中转换为一氧化二氮,使得血管内壁的肌肉放松,血液就可更顺畅地通过了)。在不到10年的时间里,这种气体从大自然中的一种外在毒素成了人体内无处不在的灵丹妙药。

根据比利时生物化学家克里斯蒂安·德迪夫的统计,你拥有“约几百种”不同的细胞,它们的大小和形状有显著的不同:神经细胞呈线状,可以伸展到1米长;红细胞呈盘状;而帮助给我们视觉的光电细胞呈杆状。细胞的大小也差别很大——给人印象最深刻的莫过于怀孕的那一刻,一个不甘示弱的精子竟然迎向比它大85 000倍的卵子(这是男人征服欲的形象化表现)。不过,一个人体细胞的平均宽度不过20微米左右——也就是1毫米的大约2%,小到几乎看不见,但大得足以容纳数以千计的像线粒体这样的复杂结构,以及亿万个分子。从最基本的方面来说,细胞的活力也各不相同。你的皮肤细胞都是死的。想到自己身体表面的每一部分都是死的,你也许会感到有点屈辱。如果你是个中等个儿的成年人,你身上裹着大约2千克的死亡皮肤,其中每天都有几十亿的微小组织从你身上脱落。如果你将一根手指从布满灰尘的搁架上划过,那个痕迹在很大程度上是用你死去的皮肤划成的。

大多数细胞的存活时间很少超过一个月,但也有一些明显的例外,肝脏细胞可以存活几年,虽然它们的内部成分每隔几天就更新一次。大脑细胞和你的寿命一样长。从你出生起,你拥有大约1 000亿个细胞,这也就是你所能拥有的细胞数的最高值。据估计,你每小时大约丢失500个细胞。因此,要是你认真想一想的话,你真的是一刻光阴也不该浪费。令人欣慰的是,你脑细胞的组成部分总是在不断更新,因此,与肝脏细胞相类似,你的大脑细胞实际上只存活一个月左右。事实上,据认为,我们身上的任何一个部位——还不如说是一个迷途分子——都与9年前不同。这听起来似乎有些玄乎,但从细胞的层面上讲,我们都是年轻人。

最先描述细胞的是罗伯特·胡克,我们在前面提到过他。他为行星运行平方反比律的发现权和艾萨克·牛顿产生过争执。胡克活了68岁,一生中取得了许多成就——他不仅是一个颇有造诣的理论家,同时还是一位制作精密仪器的高手——但是使他赢得最大声誉的还是他完成于1665年的畅销书《显微图谱:或关于使用放大镜对微小实体做生理学描述》。他向心驰神往的公众展示了一个微观世界,在这个世界中,其纷繁复杂的多样性,熙熙攘攘的热闹程度,巧妙绝伦的结构方式,都远远超出了此前任何人的想象。

胡克最先发现了许多微观情景,其中有植物身上的小空洞。他给这些空洞取了一个名字——“细胞”,因为它们使他联想起修道士的单人小室。胡克计算出1平方厘米软木片大约包含195 255 750个这样的小空洞——如此巨大的数字在科学领域还是第一次出现。显微镜的发明到这个时候已经有一代人左右的时间,但不同的是,胡克的显微镜达到了高超的水平。它们可以放大30倍,在17世纪的光学技术中鹤立鸡群。

因此,仅仅10年以后,当胡克和伦敦皇家学会的其他成员收到由荷兰代尔夫特一个布料商寄来的用275倍率显微镜观察所得的图像和报告时,他们不免感到有些吃惊。这个布料商名叫安东尼·范·列文虎克。尽管他几乎没有受过正规教育,也无任何科学背景,但却是一个敏锐的专心致志的观察者和技术天才。

直到今天,我们也不知道他是怎样通过简陋的手工装置制造出如此高倍率的显微镜的。它无非就是将一小块玻璃嵌入木榫而成。他的显微镜更像是放大镜,而不像我们大多数人认为的显微镜,但其实二者都不大像。列文虎克每做一个实验都要制作一件新的仪器。可是,对于自己的技术,他却总是守口如瓶,不过他倒是就怎样提高分辨率而向英国人透露过情况。

在长达50年的时间里——不可思议的是,从他40多岁后才开始——他向皇家学会提交了近200份报告,全都用低地荷兰语写成,他只会这种语言。列文虎克罗列了他所发现的一些事实,并配以一些精美的绘图,却没有任何解释和说明。他所提交的报告几乎包括了所有可以用于检测的事物——面包霉、蜜蜂螫针、血细胞、牙齿、头发,他自己的唾液、精液甚至大便,提及后面两样时,他还说了为它们的恶臭表示歉意的话——所有这些以前几乎都没有用显微镜观察过。

1676年,列文虎克在一份报告中声称,他在一份胡椒水试剂中发现了“微生动物”。皇家学会动用了英国所能生产的一切先进设备来寻找这种“小动物”,直到一年以后才最终解决了放大倍率的问题。列文虎克发现的是原虫。据他计算,一滴水中有8 280 000个这样的微生物,比荷兰的人口还多。世界充斥着这样的生命,其生存方式和数目远远超出了以前人们的想象。

在列文虎克惊人发现的鼓舞下,其他人开始目不转睛地盯着显微镜从事研究,他们的目光有时是过于敏锐了,以致有时他们发现了一些实际上不存在的事物。一位令人尊敬的荷兰研究人员尼古拉·哈茨奥克声称,他在精子细胞中看到了“预先成形的小人”,他为这些小生物取名为“侏儒小人”。有一段时期,许多人相信所有的人——事实上,所有生物——都不过是小而完整的母体的放大体。列文虎克自己偶尔也沉湎于个人兴趣。在一次最不成功的实验中,他试图通过近距离观察一次小型爆炸来研究火药的爆炸特性,结果差一点炸瞎自己的眼睛。

1683年列文虎克发现了细菌——可是由于显微镜技术的限制,在此后的一个半世纪里,一直停留在那个水平。直到1831年,才有人第一次看到细胞核——它是由苏格兰人罗伯特·布朗发现的。布朗是一位植物学家,对科学史怀有兴趣,尽管始终不为人所知。他生活的年代是1773—1858年。他根据拉丁语nucula,意思是小坚果,将他的发现取名为细胞核。到了1839年,才有人真正认识到细胞是一切生命的基质。他就是具有这种洞察力的德国人索多·施万。就科学洞察力而言,这一发现不仅相对较晚,而且一开始也没有被广泛接受。直到19世纪60年代,由于法国人路易·巴斯德完成的具有里程碑意义的工作,才彻底地证明生命不能自发地产生,而必须来自一个事先存在的细胞。这一理论被称为“细胞学说”,它是整个现代生物学的基础。

细胞被比喻成许多事物,从“一个复杂的化学精炼厂”(物理学家詹姆斯·特菲尔)到“一个人口稠密的大都市”(生物学家盖伊·布朗)。细胞二者都是,而又都不是。说它像个精炼厂,是因为在其内部进行着规模巨大的化学活动;说它像个大都市,是因为里面拥挤不堪,忙忙碌碌,充满互动,貌似纷繁混乱,却有着自成一体的结构。不过,实质上它比你所见过的任何城市或工厂都要可怕得多。首先,在细胞内部没有上下之分(引力对细胞大小的东西几乎不起任何作用),它的每一处原子大小的空间都被充分地利用。活动到处存在,电流不停流动。你也许并不觉得自己带很多电,实际上是带的。我们吃的东西、呼吸的氧气在细胞里被合成电流。那么,我们为什么在相互接触时没有把对方击倒,或者我们坐在沙发上时又为什么没有将沙发烧焦呢?原因在于这一切都是以非常小的规模发生的:电压仅仅是0.1伏,传输的距离要以纳米来计算。然而,如果将其按比例扩大,它所产生的冲击力相当于每米2 000万伏,与一次雷电核心区所产生的电荷一样多。

不论其形状和大小如何,你身上所有细胞的构造大体相同:它们都有一层外壳或细胞膜,一个细胞核,里面存储着你正常运转所必需的基因信息。两者之间有一层繁忙的空间,叫作细胞质。细胞膜并不像我们大多数人所想象的那样是一层你用别针能刺穿的耐久胶状物,相反,它是由一种叫作脂质的脂肪物质所构成的,用舍温·B.努兰的话说,它和“轻度机油”大体相像。如果你觉得这些东西似乎很不坚实,请记住:在显微镜下,事物的表现形式是不同的。在分子的层面上,对于任何东西而言,水成了重型凝胶,而脂质简直就像钢铁一样。

如果你有机会去访问一个细胞,你一定不会喜欢它的。若是将原子放大到豌豆一样大小,那么一个细胞就会变成直径达800米的球体,由一个名叫细胞骨架的大梁似的复杂架子支撑着。在它里面,亿万个物体——有的大如篮球,有的大如汽车——像子弹一样呼啸而过。在这里你简直难以找到立足的地方,每一秒钟都会遭到数千次来自四面八方的物体的撞击和撕扯。即使对长期待在细胞里面的成员来说,这里也是一个险象环生的地方。每一段DNA链平均每8.4秒就要遭到一次袭击或损害——每天要遭到1万次——被化学物质或是其他物质撞击或撕成碎片,所有这些伤口必须很快被缝合,除非细胞不想再活下去。

蛋白质极为活跃,它们总是处于不停旋转、颤动和飞舞的状态之中,每秒钟它们都要彼此撞击10亿次。酶本身也是一种蛋白质,它们到处横冲直撞,每秒钟要完成1 000件任务,就像快镜头里的工蚁,它们不断地建立和重建分子,为这个减去一小块,为那个增加一小块。一些酶随时监控路过的蛋白质,为那些已损坏得无法修补的或有缺陷的蛋白质标上化学记号。接着,这些被标上记号的蛋白质形成了一种被称为蛋白酶的结构,在这个结构中进行分解,并形成新的蛋白质。有几种蛋白质的存活时间不超过半小时,另一些则达好几周。但是,它们都以令人难以置信的疯狂方式存在。正如德迪夫所指出的:“分子里面的一切都以不可思议的高速运转着,我们简直无法想象。”

但是,如果让分子世界事物运转的速度慢下来,慢到足以仔细观察其相互作用的程度,事情似乎就不会那么令人不知所措了。你会发现一个细胞不过是数百万个物体——不同大小、不同形状的溶酶体、内吞体、核糖体、配位体、过氧化物酶体、蛋白质,它们与数百万个别的物体相互撞击,从而完成了再普通不过的任务:从营养物里摄取能量、聚合成新的结构、排除废物、抵挡入侵者、接发信息、进行修补工作。一个细胞一般包含大约2万种不同的蛋白质,其中近2 000种中的每一种至少有5万个分子。“这意味着,”努兰说,“即使我们只统计那些每一种的数量在5万以上的分子,每一个细胞中所包含的蛋白质分子总数最少有1亿个。这是一个惊人的数字,我们从中可以了解一点我们体内生物化学活动的剧烈程度。”

这种活动所消耗的能量也是十分巨大的。你的心脏每小时必须输出约340升血液,每天则要输出8 000多升,每年输出300万升——这足以装满4个标准的奥林匹克游泳池——以使所有细胞获得新鲜的氧气。(这是指在休息的时候,如果做剧烈运动,这个数字还要增加至6倍。)氧气被线粒体吸收,它们是细胞的发电站。一个细胞里一般有大约1 000个这样的发电站,其具体数目根据细胞所做的事情及所需能量的不同而有很大差异。

你大概还记得,我们在前面提到,据认为,线粒体原先是被俘获的细菌,如今是我们细胞中的寄居者。它们保留了自己的基因指令,按照自己的时间表来分裂,操自己的语言。你也会记得,多亏它们的好心照料,我们才得以安康。为什么这么说?因为你摄入体内的几乎所有食物和氧气经过加工后都被输送给线粒体,然后由它们将其转换为一种名为三磷酸腺苷的分子,也就是ATP。

你可能没听说过ATP,但正是它使你的身体运转正常。ATP分子实质上就像一组小小的电池,它们在细胞内移动,为细胞活动提供全部能量,在此过程中你获益匪浅。在你生命的每一瞬间,你体内的每个细胞内通常具有10亿个ATP分子,2分钟以后它们的能量都会消耗殆尽,然后又会有10亿个新的ATP分子接替它们的位置。每天你产生和消耗的ATP重量大约是你体重的一半。摸一摸你温热的皮肤,那是你的ATP在工作。

当细胞不再被需要时,它们以堪称高贵的方式死去。它们拆下所有支撑它们的支柱和拱壁,不露声色地吞噬掉其组成部分。这一过程被称为凋亡或程序性细胞死亡。每天都有数十亿个细胞为你而死,又有数十亿个别的细胞为你清扫它们的遗体。细胞也可能暴死——比如当你被感染时——但在大多数情况下它们是按照指令死去的。事实上,如果它们没有收到继续活着的指令——如果没有收到另一个细胞发出的活动指令,细胞会自己杀死自己。细胞真是太需要安慰了。

在偶然情况下,细胞没有按指令死去,相反却开始拼命分裂和扩散,这种情况我们称为癌症。癌细胞其实不过是迷途的细胞。细胞经常犯类似的错误,但是人类身体具有一种纠正这种错误的复杂机制,只在极其偶然的情况下,细胞的活动才会失去控制。平均来说,每10亿亿次细胞分裂中,人会得一次致命的疾病。癌症无论从任何意义上说都是运气不好的表现。

细胞的奇妙之处不在于事情偶尔会出问题,而在于它们在几十年的时间里使人体内的一切运转正常。为此,它们不停发送和监控来自全身各个部位的信息——嘈杂的信息:指令、质问、修正、救助、更新、分裂或死亡的通告。所有这些信息大多数是通过名叫激素的化学实体来传递的,如胰岛素、肾上腺素、甲状腺素、睾丸素,它们从遥远的部位传递信息,如甲状腺和内分泌腺。还有一些信息是从大脑或区域中心传输过来的。这个过程叫作“发出旁分泌信号”。最后,细胞直接和它的左邻右舍进行交流,以确保它们行动一致。

细胞最引人注目的特点是,它们总是以一种疯狂的速度处于漫无目的的运动和无休无止的撞击状态中,而驱使它们这么做的无非是吸引和排斥的基本法则。细胞的任何运动都无理性可言。所有的运动都平静地、重复地、可靠地发生着,因此我们甚至很少能意识到。然而,这一切不仅很好地维持着细胞内的秩序,而且使得有机体保持在一种完美的和谐状态中。几万亿几万亿个反射性的化学反应,以我们才刚刚开始知道的方式,加起来形成能行动、有思想、有主见的你——或者形成一个不大有思想而又依然结构有序的金龟子。千万不要忘记,每个生物都是一个原子工程奇迹。

有一些我们认为是很原始的生物有着某种层面的细胞组织,使得我们自己的细胞组织看上去马虎潦草,平淡无奇。将海绵的细胞分解开。比如通过过滤器过滤,然后把它们倒进溶液中,它们会很快重新聚合,再次形成海绵。你可以反复做这种实验,它们总会顽固地重新聚合在一起。这是因为,就像你和我,以及所有别的生物那样,它们有一种不可抗拒的冲动:继续活下去。

而这一切都是因为存在一种非常古怪、坚定不移、我们所知甚少的分子。这种分子本身没有生命,它们中的绝大多数根本不做任何事情。它的名字叫DNA。在开始了解它对于科学和我们自身所具有的极端重要性之前,我们有必要先回到大约160年前维多利亚时代的英国,即博物学家查尔斯·达尔文所生活的时期。当时,达尔文提出了一种“有史以来最好的理论”——可是在随后的15年里却被锁在抽屉里。个中原因,我们得花费一些笔墨才能解释清楚。

上一章:第二十三章 下一章:第二十五章
网站所有作品均由网友搜集共同更新,仅供读者预览,如果喜欢请购买正版图书!如有侵犯版权,请来信告知,本站立即予以处理。
邮箱:yuedusg@foxmail.com
Copyright@2016-2026 文学吧